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Mass transport in two-dimensional water waves 

By MOHAMED ISKANDARANI AND PHILIP L.-F. LIU 
Joseph Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, 

Cornell University, Ithaca, NY 14853, USA 

(Received 31 July 1990 and in revised form 15 March 1991) 

Mass transport in various kind of two-dimensional water waves is studied. The 
characteristics of the governing equations for the mass transport depend on the ratio 
of viscous lengthscale to the amplitude of the free-surface displacement. When this 
ratio is small, the nonlinearity is important and the mass transport flow acquires a 
boundary-layer character. Numerical schemes are developed to investigate mass 
transport in a partially reflected wave and above a hump in the seabed. When the 
mass transport is periodic in the horizontal direction, a spectral scheme based on a 
Fourier-Chebyshev expansion, is presented for the solution of the equations. For the 
case of a hump on the seabed, the flow domain is divided into three regions. Using 
the spectral scheme, the mass transport in the uniform-depth regions is calculated 
first, and the results are used to compute the steady flow in the inhomogeneous flow 
region which encloses the hump on the seabed. 

1. Introduction 
On free-surface gravity waves, fluid particles possess, aside from the to-and-fro 

time-dependent motion, a small steady drift often called mass transport velocity. 
The drift motion is the result of a non-zero mean momentum flux generated by the 
velocity fluctuations. The magnitude of the steady velocity is small compared to the 
primary oscillations; nevertheless, it  is responsible for the migration of the fluid 
particles. The aim of this paper is to investigate the mass transport induced in two- 
dimensional water waves. 

Several approximations are usually made to simplify the analysis of the steady 
flow (Longuet-Higgins 1953 ; Riley 1965 ; Stuart 1966; Dore 1976). First, the velocity 
is expanded in an asymptotic series in terms of a small parameter u, 

where a is the amplitude of the oscillation, and k is the wavenumber of the surface 
wave. Second, the first-order motion, O(a),  is assumed to be periodic in time with zero 

t )=au1+a2uz+ ..., u = E a <  1, ( 1 )  

mean : 

u - _  ul(t) dt = 0, 

where the overbar denotes a time average over a period, and Q is the wave frequency. 
The steady flow is hence given, to a first approximation, by the time average of the 
second-order motion, u2, which is often referred to as the steady streaming or 
Eulerian streaming (e.g. Batchelor 1967). The mass transport u,, defined as the time 
average of the Lagrangian velocity, becomes (e.g. Longuet-Higgins 1953) 

(3) 
- 

U, = v , + u , + O ( ~ ~ ) , U ,  = 
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where v, is the Stokes drift. Third, the O(a) motion is irrotational, V x v,  = 0, and can 
be described with a velocity potential. This assumption is not valid near the flow 
boundaries where shear layers develop to accommodate either the no-slip condition 
on the seabed, or the continuity of shear stress a t  the free surface. The shear layers, 
also called Stokes’ boundary layers, have a small thickness E = O(E(v/a)$,  where v is 
the kinematic viscosity. 

Dore (1976) gives a derivation of the three-dimensional equations governing mass 
transport in the fluid core, i.e. ‘far’ from the Stokes boundary layers. These 
equations describe the transport of the O(a2)  mean vorticity by convection, vortex 
stretching, and viscous diffusion. The interplay between diffusion and convection/ 
vortex stretching is determined by the ratio 6 = € / a  of the viscous lengthscale 
to the amplitude of the oscillatory motion. When 6 is large, viscous diffusion 
dominates, and the vorticity is expected to diffuse in the whole domain. When 6 is 
sufficiently small, convection and vortex stretching are expected to be the 
predominant mode of transport in the core of the fluid. However, next to the 
boundaries, large normal gradients of the vorticity develop to balance the governing 
equations and compensate for the smallness of 6. The question hence arises whether 
convection would prevent the mean vorticity from spreading into the whole region. 
The steady streaming would then remain confined within an outer boundary layer, 
of thickness 6, often referred to as the Stuart layer. The double boundary layer would 
be much larger than the Stokes’ boundary layer ( E :  4 a), but smaller than the typical 
dimension of the problem (6 4 1).  Based on the boundary-layer approximation, 
Stuart (1966) and Riley (1965) obtained analytical solutions, in the form of 
asymptotic series, for the Stuart layer generated by an oscillating cylinder in an 
infinite fluid region. Outside the Stuart layer, the vorticity was assumed to be zero 
and the steady streaming also vanished. 

The experiments of Bertelsen, Svardal & T j ~ t t a  (1973) on the steady streaming 
induced by an oscillating cylinder confirmed the existence of the Stuart boundary 
layer. The measurements compared well with Riley’s solution within a distance 6 
from the surface of the inner cylinder. Farther away, the experimental results gave 
a stronger velocity than predicted by the series solution. The numerical experiments 
of Duck & Smith (1979) proved that the discrepancies were due to the finite flow 
region in the experiment. Moreover, the work of Batchelor (1967) shows that in the 
limit 6+0, a steady flow with closed streamlines becomes essentially inviscid but 
rotational away from the boundaries, and the vorticity distribution becomes more or 
less uniform in the core region. In the context of water waves, Haddon & Riley (1983) 
performed a number of numerical simulations for mass transport in standing waves, 
and their results support the conclusions of Duck & Smith (1979). 

The aim of this work is to investigate mass transport for a broad range of the 
parameter 6, and for different physical situations. To this end, various numerical 
models, that do not inherently restrict the value of 6, are developed to solve the 
governing equations. The first physical situation considered consists of a spatially 
periodic wave in water of constant depth where the mean flow is also periodic. The 
prescription of lateral boundary conditions can be avoided if the dependent variables 
in the problem are expanded in a Fourier series. Section (3) elaborates on the spectral 
solution of the periodic mass transport. The numerical model is then used to compute 
the mass transport in partially reflected waves, for a range of reflection coefficients, 
and for different values of 6. 

The second situation concerns the mass transport in waves travelling over a 
variable topography, where the bathymetrical features are large enough to affect the 
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wave motion. The example consists of a symmetrical hump located on constant 
water depth. The computational domain is truncated and adequate boundary 
conditions are applied at the lateral sides. The first-order motion is spatially 
aperiodic over the variable bathymetry, and the representation of the mass transport 
with Fourier functions loses its advantages. A finite-element scheme is chosen for the 
numerical solution to resolve the irregular geometry of the bathymetry. The solution 
shows the formation of a circulation cell downstream of the disturbance whose size 
depends on the parameter 6 and height of the hump. 

2. Governing equations 
Dore (1976) derived the three-dimensional equations governing mass transport in 

the core region ; the two-dimensional stream function-vorticity formulation of those 
equations is 

where $2 and s j 2  are the stream function and vorticity associated with the O(a2) 
steady motion, and where the following dimensionless variables have been used : 

x = Ex!, t = ut', 0 = (E/u) u), 0 = d/u, $ = (P/u)  v. 
The components of the Eulerian streaming, a2 and u2, are derived from the stream 
function as follows 

Moreover, the vorticity and the stream function obey the compatibility equation 

v2g2 + a, = 0.  (6) 
We also define a Lagrangian stream function, x, such that the mass transport 
velocity components (u,,v,) bear the same relation to x as (a2,Q to 3,. The 
Lagrangian and Eulerian stream functions x and $, are related via 

where refers to the stream function of the first-order oscillatory flow. 
As indicated earlier, (4) is not valid near the seabed and free surface because the 

O(a) motion is not irrotational. The analysis of the steady flow in these 
neighbourhoods is necessary to derive boundary conditions for (4) and (6). Longuet- 
Higgins (1953) invoked the boundary-layer approximation to study the flow next to 
a solid boundary, or next to a free surface. At O(a),  the vorticity generated is 
harmonic in time and remains confined to the shear layers of thickness O(E 4 1). 
However, the products of the leading velocity components produce a steady 
Reynolds stress at O(a2). The gradient of the steady Reynolds stress generates an 
Eulerian steady streaming inside the boundary layer adjacent to the seabed and a 
steady vorticity in the free-surface boundary layer. Measurements of the steady 
streaming at  the seabed and the steady vorticity at the surface can be found in 
Russell & Osorio (1958) and Longuet-Higgins (1960). Both the steady streaming and 
the steady vorticity are of O(a2) and persist outside the Stokes' layer to form a 
driving mechanism for the mass transport in the core of the fluid region. 
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If the first-order potential velocity is given by Re [( U,  V )  e-it], Longuet-Higgins 
(1953) gives the following expression for the Eulerian streaming tangential to the 
boundary and at the outer edge of the Stokes’ layer : 

as 

where U s  is the tangential potential velocity of the fluid a t  the solid surface, s is the 
arclength along the boundary, an asterisk denotes the complex conjugate, and Re 
indicates the real part of a complex quantity. Longuet-Higgins’ expression for the 
mean vorticity a t  the edge of the free-surface boundary layer is 

i j , = R e  [ 2i-- aysn*]> (9) 

where aUs/as and aUn*/as are the tangential gradients of the tangential and normal 
potential velocity of the fluid evaluated on the free surface. 

The velocity component normal to  the seabed can be computed from the 
continuity equations and shown to be of O(ca2). The seabed is hence a streamline in 
the Eulerian and Lagrangian sense : 

(10) 
Also, the free surface is a Lagrangian streamline, i.e. 

(11) x = constant. 

The choice of the constant is a t  our disposal. I ts  value determines the total amount of 
flux a t  any vertical section. An obvious choice is to equate the stream function a t  the 
seabed and free surface so that the net drift a t  any section is zero. This is a reasonable 
assumption in a closed system where the establishment of a recirculation pattern, in 
the absence of sources and sinks, is imperative to satisfy the conservation of mass. 
The specification of a net flux amounts to  a condition on the mean O ( 2 )  pressure 
gradient (Unluata & Mei 1970). In  all cases considered here the system has been 
regarded as closed, and the net mass flux is required to vanish. 

In  the following sections, we compute the mass transport by solving (4) and (6) 
subject to (8)-(11). The overbar and the subscript 2 on all second-order mean 
quantities will be dropped, and capital letters will be used to refer to first-order 
potential flow quantities. 

$F2 = x = 0. 

3. Partially reflected waves 
When the water depth is a constant h, the O(a) free-surface displacement, for 

small-amplitude partially reflected waves with a reflection coefficient R ,  is given by 

(12) 
The x- and y-axes are horizontal and vertical respectively with the origin located a t  
the still water level. The wave is purely progressive in the positive z-direction when 
R = 0, and purely standing for R = 1. The x and y potential velocity components, 
corresponding to  the free surface displacement in (12), are 

the real part of 6 = (eikz +R e-ikz) e-it. 

U = -  k cosh k(y + h) (eikz-R e-ikz), 
p coshkh 

p coshkh 
- ik sinh k(y + h) eikz 

J7=- ( +RepikZ), 
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where p = a2/(&g) = k tanh kh. The Stokes drift can be written analytically : 

k3cosh2k(y+h) 
y) = 2p2 cosh2 kh (1 -RR*), v,(x, y) = 0 

and has no vertical component. For the second-order mean motion, the seabed is a 
streamline whose value is arbitrarily set to zero : 

$(x, -h) = X ( X ,  -h) = 0. (14) 
The Eulerian streaming at the seabed (strictly speaking at  the outer edge of the 
Stokes boundary layer) is (Longuet-Higgins 1953) 

The Lagrangian stream function is set to zero at  the free surface, i.e. 

k2sinh2kh (l-RR*) 
4p2 cosh2 kh 

$(x, 0) = p = - 

and the vorticity is given by 

- k4 sinh 2kh 
p2 cosh2 kh 

o(x ,  0) = ws = (1 -RR*). 

From (13)-(17), the mass transport has to be periodic in the direction of wave 
propagation because of the periodic forcing terms. 

The present numerical scheme rests on a spectral representation of the dependent 
variables @ and w .  The shape functions in the horizontal direction are Fourier 
functions that guarantee the periodicity of the flow in the x-direction, and allow the 
no-slip condition on the velocity to be transformed analytically into an integral 
constraint on the vorticity. The shape functions in the vertical direction are 
Chebyshev polynomials that allow aperiodic boundary conditions to be prescribed at  
the free surface and the seabed. Moreover, among the many properties of Chebyshev 
polynomials (Boyd 1989), is the ability to sum Chebyshev series efficiently using fast 
Fourier transforms (FFT) ; these sums arise when the nonlinear convection term in 
(4) is evaluated. The method of ‘false transients ’ (Roache 1982) is used to control the 
development of the nonlinearities : a time-dependent term is introduced in (4), and 
the coefficients of the Fourier4hebyshev expansions are made dependent on the 
fictitious time t. When the spectral series for the stream function and vorticity are 
substituted in the governing equations (4) and (6), and a Tau procedure (Canuto 
et al. 1988) invoked, a system of ODE’S (in time t )  is obtained. The time integration is 
performed with finite differences, and the solution is advanced in time until a steady 
state is reached. The details of this numerical formulation are presented next. 
References on spectral methods and their applications can be found in Gottlieb & 
Orszag (1977) and Canuto et al. (1988). 

3.1, Spectral scheme 
Since the equations have spatial periodicity and the Chebyshev polynomials are 
defined over the interval [ - 1,1], we define the new variables f ;  = 2kx and 7 = 
(2/h) y+ 1. Let 



400 Mohamed Iskadarani and Philip L.-F. Liu 

where Tm(q) is the Chebyshev polynomial of the first kind and order m (Canuto et al. 
1988). 

The series expansions are substituted in the transient form of (4) and in (6), and 
the Chebyshev-Tau method is applied to the resultant equations to obtain 

for m = 0, 1,  . . . , M -  1, and n = 0, 1,  . . . , N .  The 2 in the subscript of the summation 
sign indicates the increments of the index p ;  co = 2 for m = 0 and c ,  = 1 for m 2 1. 
The Rm, are the Fourier-Chebyshev coefficients of the nonlinear convection term 

The Fourier decomposition of the boundary conditions gives the following 
expressions : 

M M 

C ( -  l)"m2Ym, = ihu;, C Q,, = Qi (0 d n d N ) ,  (22a, b)  

CI ( - l ) m y m , n  = O ,  C $ m , n  = F n  (0 < n G N ) ,  (23a, b )  

m-0 m-0 

M M 

m-0 m-o 

where Pn, QS, and u; are the Fourier coefficients of p, ws and ub: 

When finite differences are used for the time integration, (19), (20), and (22)-(23) 
yield a system of 2(M+ 1) (N+ 1) nonlinear algebraic equations for the 2(M+ 1) ( N +  1) 
unknowns ~.,,, and a,,.. In  order to  linearize the problem, the convection term, 
Rm,n,  in (19) is approximated with its value a t  the current time level. This 
approximation presents two main advantages. First, since Rm, in (19) is known, the 
no-slip condition (22a) becomes the only tie between the vorticity and stream 
function equations. If an adequate boundary condition for the vorticity is provided, 
one can solve (19) subject to (22) to update the vorticity field, and then (20) subject 
to (23) to find the corresponding stream function. Second, the different Fourier 
modes ( n  = 0 , 1 , 2 , .  . . , N )  involved in (19) decouple, and the equations link only the 
M +  1 Chebyshev modes of every Fourier mode. The same is true for (20) because it 
is linear. The nonlinear system of 2(N+ 1 )  (M+ 1) equations can thus be divided into 
two (one for Qm, and another for Ym, ,J (N+ 1) sets of (M+ 1) linear equations. The 
computational cost, at each time step, to solve the set of linear systems is 
proportional to (N+ 1) (M+ 1)3, as compared to [(N+ 1) (M+ l)I3 had the original 
system been solved directly. The trade-off comes in the number of steps required to  
converge to  the steady-state solution, and in the overhead incurred when evaluating 
the convection term. 
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3.2. Vorticity constraint 
The sequential solution of the vorticity and stream function equations hinges on the 
derivation of an appropriate no-slip boundary condition for the vorticity. To this 
end, the solution of the compatibility equation will be sought with the assumption 
of a periodic horizontal flow. The relation between the vertical derivative of the 
stream function and vorticity can then be stated explicitly. Let 

and substitute in (6). The following differential equation and boundary condition are 
obtained for each Fourier mode n = 0, 1, . . . , N :  

d2 Y,, 
-- (nkh)2Yn+ih2Qn = 0, 
dq2 

Yn(q = 1) = Pn, Yn(7 = -1) = 0. 

The solution is given by 

(27) 

for n = 0, and 

sinh nkh(7 + 1) 
Yn(7) = Pn-- Q,(C)sinhnkh(Y-l)d[ [ 4 t k L l  ] sinh2nkh 

Q,([) sinhnkh(g-q) d[ (29) 
h 

for n = 1,2, . . . , N .  The derivative, with respect to 7, of the above two expressions is 
evaluated on the seabed and equated to the right-hand side of (22a) to give the 
following relations : 

-4. 
The no-slip condition on the velocity has thus been recast into an integral condition 
on each Fourier mode of the vorticity. The final form of this boundary condition is 
obtained when the Fourier coefficients Q, in (30) and (31) are replaced by their 
Chebyshev series, Q, = xE-o Qm, Tm(7). Thus 

The expressions for the Smsn  are given in the Appendix. 
In the time integration, the viscous term in (19) is handled implicitly for the sake 

of numerical stability, while the nonlinear term is evaluated explicitly with a fourth- 
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FIGURE 1. Comparison of the mass transport velocity profile under a standing wave at z = $, 
midway between the node and antinode, as obtained from the spectral scheme (-, S = 0.04; ---, 
S = 0.1) and the FEM scheme (0, S = 0.04; x ,  6 = 0.1). 
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FIGURE 2. Horizontal profile of the vorticity under a standing wave for 6 = 0.04, from the spectral 
scheme(-), and FEM scheme (0) at (a)  y =--1.0 (seabed), ( b )  y =-0.9, ( c )  y = -0.6, ( d )  
y = -0.2. 
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FIGURE 3. Lagrangian streamlines (a, b )  and vorticity (c, d )  contours for a standing wave R = 1.0: 
(a )  S = 0.04, Ax  = 0.02; ( b )  6 = 0.04, AOJ = 2.0; (c) 6 = 0.10, Ax = 0.02; (d )  8 = 0.10, AOJ = 2.0. 

order Runge-Kutta scheme. The time discretization of (19) yields the following 
algebraic equations : 

where RLSn is the convection term a t  time level t .  The solution procedure is the 
following : (i) given the vorticity coefficients Qt,, a t  time t ,  the corresponding stream 
function coefficients Pm,. are obtained from (20)  and ( 2 3 ) ;  (ii) an estimate of the 
nonlinear term Rt,,. is calculated according to a Runge-Kutta 4 scheme; (iii) (34) ,  
(22b)  and (32)  or ( 3 3 ) ,  are solved for the new vorticity coefficients sZz,AA; (iv) Steps 
(i)-(iii) are repeated until 

lap; -at,, n l  < 10-5 .  

3.3.  Numerical results 

The numerical simulations were performed by keeping the dimensionless wave- 
number k and water depth h equal to 1 while the reflection coefficient, IRI, was 
varied from 0.1 to 1.0 in increments of 0.1. The standing-wave case (IRI = 1) is special 
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FIQTJRE 4. Mass transport velocity profile at  z = --$I for 6 equal to  0.04 (-), 0.1 (-.-) and 
100 (--); (a )  R = 0.1, ( b )  R = 0.3, (c) R = 0.5, ( d )  R = 0.7. 

in that all forcing terms vanish (p = ws = us = 0) except for the Eulerian streaming 
at  the seabed. The latter becomes proportional to sin22 and possesses symmetry 
about the nodal (x = nn, n = 0,1, . . .) and antinodal (x = g(2n + 1) n) lines of the free 
surface ; one can then deduce that I) = w = 0 a t  these symmetry lines. The lateral 
sides are hence Dirichlet boundaries, and the mass transport equations can be solved 
by using the finite-element method (FEM) (see Baker 1983) within a finite domain 
between a node and an antinode (e.g. 0 d x d in). Figure 1 shows the mass transport 
profile at x = (midway between the node and the antinode) as computed by FEM 
versus the spectral solution. The agreement is very good for the two &values 
considered, 0.1 and 0.04, and the comparison provides confidence in both numerical 
schemes. The formation of the Stuart boundary layer for small values of 6 is evident 
in the large velocity gradients near y w -h+0(6).  Figure 2 ( a d )  depicts the vorticity 
a t  different elevations for 6 = 0.04. The FEM and spectral solutions show some 
discrepancies near the seabed (y = - l ) ,  but the agreement is still good. The figures 
also show the uniform vorticity distribution inside the recirculation region, away 
from the lateral sides x = O,$x, the seabed (y = - l),  and the free surface (y = 0). 
Similar results were obtained in the numerical experiments of Haddon & Riley 
(1983). The streamlines are shown in figure 3(a, b )  where the formation of two cells 
is evident ; the left and right cells rotate in the counterclockwise and clockwise 
direction respectively. The seabed boundary layers in each cell collide at  x =  
nn (n = 0,1,  . . .), and deflect upward to form a vertical jet under the antinodes of the 
free surface. This jet remains attached to  the symmetry line and shoots up until it 
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FIQURE 5. Mass transport velocity at free surface y = 0 for 8 equal to 0.04 (-), 0.1 (-.-) and 
l o o - - ) ;  (a)R=0.1 ,  (b)R=0.2 ,  ( c ) R = 0 . 8 ,  (d)R=1.0 .  

reaches the free surface. At  this point, the flow becomes horizontal and starts forming 
the recirculating region that feeds fluid into the bottom boundary layer. Decreasing 
the parameter S seems to confine a bigger part of the flow to the boundary regions. 
A comparison of the contours in figures 3 (a )  and 3 ( b )  shows a more symmetrical 
distribution of the streamlines, and larger velocities near the nodal lines x = k in .  The 
closer streamlines in the jet, with decreasing S, indicate an increase in the vertical 
velocity. The vorticity contours for 6 = 0.1 are shown in figure 3(c, a?). Strong 
vorticity and its gradients appear near the seabed and in the jet. In the central part 
of the flow, however, the vorticity is more or less uniform. This could have been 
inferred from Batchelor's (1967) theorem concerning steady-state flows with closed 
streamlines. The velocity in the central region is smaller than near the boundaries 
but has still appreciable magnitudes ; the mass transport persists outside the Stuart 
layer. 

The dependency of the mass transport velocity on S diminishes as the reflection 
decreases. This is illustrated in the velocity profiles at  x = -in, figure (4~4). The 
velocity profile remains close to the parabolic shape associated with a purely 
progressive wave when IRI is small (IRI < 0.3). The graphs depict the formation of the 
seabed boundary layer as 6 decreases and IRI increases. The large velocity gradients 
within a distance O(S) of the seabed reveal the presence of this outer boundary layer. 
These gradients decrease appreciably away from the seabed, and tend to increase in 
the neighbourhood of the free surface. Figure 5 ( a 4 )  describes the dependency of the 
mass transport velocity at the free surface on the parameter S; the influence increases 
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FIQURE 6. Lagrangian streamlines ( A x  = 0.02) in partially reflected waves for S = 0.04 and (a) 
R = 0.1, ( b )  R = 0.3, (c) R = 0.5, (d )  R = 0.7. 

as the wave reaches the standing wave limit. The Lagrangian streamlines (particles 
paths) and vorticity contours, figures 6 and 7 ,  are drawn to follow the development 
of the jet already mentioned in the standing wave case. The jet formation depends 
more on the reflection coefficient to induce a flow reversal a t  the seabed, than on the 
value of 8. The mass transport velocity at the edge of the Stokes boundary layer is 
given by 

where 6, is the phase of the reflection coefficient. The velocity is positive throughout 
the region when IR( 6 R, = 5(34);-3). Flow reversal occurs when IRI 2 R, a t  the two 
6-locations where 

sin (5-5,) = 5(1 - I w ) ) / ( 6 l m  

Recirculation cells appear well before the reflection coefficient reaches the critical 
value. No sign of the jet is, however, perceptible until IRI 2 R,. This is most apparent 
in the streamline contours when 1RI = 0.6 > R,. For this case, the jet does not reach 
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FIQURE 7 .  Vorticity contours (Aw = 2.0) in partially reflected waves for 6 = 0.04 and (a) R = 
0.1, ( b )  R = 0.3, (c) R = 0.5, (d )  R = 0.7. 

the free surface but, rather, is deflected sideways. As IRI increases, the jet axis 
becomes more aligned with the vertical, and the jet source moves towards the 
antinodal line x = 0. 

The parameter 6 bears a stronger influence on the vorticity distribution than on 
the velocity profiles even at small values of the reflection coefficient. Figure 8(a-d) 
compares the vertical vorticity profile along the line x = in for different values of (RI 
and 6. When S is large, the vertical vorticity distribution is almost linear and 
resembles the progressive wave profile ; as IRI approaches 1, it acquires the hyperbolic 
character associated with the conduction solution in standing waves (Longuet- 
Higgins 1953). For small S (0.10 and 0.04), and unlike the velocity profiles in figure 
4(a-d),  the vorticity develops a boundary-layer character near the seabed even at 
small IRI-values. This is not entirely surprising as one would expect the second 
normal derivative of the velocity to be more singular than the first-order derivative, 
because each differentiation along the normal raises the order by O ( 6 l ) .  The large 
vertical vorticity gradients are confined within a distance O(6) from the seabed. 
Outside this region, the vorticity gradients diminish quickly and stay a t  a constant 
value in the bulk of the flow region. One can notice an almost linear profile for the 
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FIQURE 8. Vorticity profile at  z = -in for 6 equal to 0.04 (-), 0.1 (-.-) and 100 (--); 
(a) R = 0.1, ( b )  R = 0.5, (c) R = 0.9, ( d )  R = 1.0. 

vorticity when 1B1 is small. At larger values, the vorticity becomes more uniform in 
the recirculation region as the streamlines become closed. A vorticity gradient is 
induced by the jet that  forms at IRI 2 0.6; the vorticity distribution, however, 
becomes more uniform on either side of the jet, as 6 decreases and IRI approaches 1. 
The vorticity contours in figure 7 for 6 = 0.04 support the aforementioned 
observations. 

Spectral schemes, in contrast to other numerical methods, approximate the 
solution with global shape functions. This effectively restricts their applications to 
problems with regular geometries. Moreover, Fourier functions lose their advantages 
when the problem is aperiodic. I n  the case of water waves for example, the mass 
transport is not spatially periodic if the waves are propagating over uneven 
topography ; the solution of the equations has to rely on a different formulation than 
the one presented in this section. Among the many numerical schemes, the FEM 
offers great flexibility in dealing with irregular geometry, boundary conditions and 
nonlinearities. Details about the FEM can be found in Baker (1983). 

4. Mass transport around a localized disturbance 
I n  this section, we investigate the mass transport around a localized disturbance 

in an otherwise uniform two-dimensional wave field. The disturbance is a hump 
located in a constant-depth region, and its size is large enough to reflect the incident 
wave. 
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The solution of the mass transport equations raises a difficult question that 
concerns the type of boundary conditions to apply upstream and downstream of the 
disturbance for, unlike the O(a) motion, radiation boundary conditions do not exist. 
These complications stem from the elliptic nature of the governing equations. If the 
computational domain is truncated, appropriate boundary conditions must be 
applied to mimic the upstream and downstream flows. 

In this study, the flow domain is divided into three different regions, and the 
steady flow in each of them is calculated. When an incident wave encounters the 
disturbance, part of the wave is reflected back while the rest propagates downstream 
as a transmitted wave. The reflection and transmission phenomenon gives rise to 
local wave modes (evanescent modes) that die out quickly as one moves away from 
the scatterer. Far away from the scatterer, the wave field consists of a partially 
reflected wave upstream of the disturbance, and a purely progressive wave 
downstream. The mass transport is hence periodic in the upstream region and can be 
computed with the help of the spectral scheme, once the reflection is known. 
Downstream, and owing to the purely progressive nature of the transmitted wave, 
the mass transport is uniform in the direction of wave propagation ; the solution is 
independent of the parameter S and easy to compute. In the localized disturbance 
region, the irregular geometry imposes the recourse to the FEM scheme. The three 
solution domains are connected at  the ‘in-flow ’ and ‘out-flow ’ boundaries. 

In the present work, the upstream and downstream mass transport have been 
computed on the assumption of no net flux. The ‘in-flow ’ and ‘out-flow ’ terminology 
is, hence, not very descriptive of the present situation, for on both lateral boundaries 
fluid enters and leaves the computational domain. Moreover, the velocity and 
vorticity profiles upstream and downstream are predetermined, as the mass transport 
in the wave reflection and transmission regions is computed independently. It was 
hence deemed necessary to specify the streamline and vorticity distributions a t  the 
left and right boundary. This choice of boundary conditions entails the continuity of 
the horizontal component of the velocity and the normal derivative of the vertical 
velocity a t  the lateral boundaries. The question remains: how large should the 
computational region be to minimize the influence of the boundaries on the flow near 
the disturbance 1 Various numerical experiments were carried out to investigate this 
issue and, at  least for the cases considered, the mass transport profiles and 
streamlines seemed to converge as the boundaries were farther than one wavelength 
away from the disturbance. 

The computations of the mass transport proceeds in three steps. First the O(a) 
irrotational wave field is computed with the help of the boundary integral equation 
method (BIEM) (Liu & Abaspour 1982), and the forcing terms for the mass transport 
are evaluated. Second, the mass transport in the regions of wave reflection and 
transmission is computed. Third, the results from steps one and two are combined, 
and the equations governing the mass transport are solved numerically in the flow 
region containing the seabed disturbance. The computational effort increases 
appreciably since the first-order wave field cannot be obtained analytically. 

4.1. Hump 

The seabed profile is symmetric about x = 0 with the following bathymetry: 

(1x1 a 2 0 )  
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FIQURE 9. Forcing term for the mass transport at the boundaries for h, = 0.8 (-), 0.7 (-.-) and 
0.6 (--). (a )  Geometry of the hump. ( b )  Eulerian stream function at the free surface $(r,O). (c) 
Vorticity at the free surface w(z,O) .  ( d )  Eulerian streaming at  the seabed u(z, - 1 ) .  

The water depth is h, < h, a t  x = 0, and h, at x = fx,; the geometry is sketched in 
figure 9(a). The simulation was done for x,, = h, = k = 1.0, and the height of the 
hump was put successively at h, = 0.6, 0.7,  and 0.8. The reflection/transmission of 
a progressive wave travelling from x - - co over the hump was calculated by using 
potential flow theory and the BIEM. The solution yielded the potential for the wave 
field as well as the reflection and transmission coefficients. The wave exhibited little 
reflection in view of the mild sloping topography. The reflection coefficient had a 
magnitude of 0.165,0.112 and 0.067 for h, equal to 0.6,0.7, and 0.8, respectively; the 
transmission coefficient was equal to 0.986, 0.994, and 0.998. 

Once the potential flow was known, the numerical evaluation of (7), (8) and (9) 
yielded the stream function (@ = $,(z, 0) with x = 0) and vorticity (us = i3,(z, 0)) on 
the surface and the Eulerian velocity on the seabed (ub = ZT,(Z, -h ) ) .  The Stokes drift 
was calculated from (3). Iskandarani (1991) provides more details on the BIEM 
solution and the computations of forcing terms for the mass transport. The surface 
forcing terms, @ and us, and the Eulerian streaming a t  the seabed, ub, are shown in 
figures 9(b)-9(d) for the case k = 1.0, and h, = 0.8, 0.7, and 0.6. The first two figures 
(9b, c) show the variations of the stream function I+F and vorticity ws at the free 
surface; both attain their peak a t  the crest of the hump. Figure 9(d) depicts the 
Eulerian velocity at the seabed; as one moves downstream, ub decreases from a 
positive nearly constant value to a minimum, and then increases rapidly to reach a 
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FIQURE 10. Mass transport velocity profile at different sections above a hump for h, = 0.7 and 6 
equal to 0.05 (-), 0.1 (-.-), 100 (--); (a) x = - 1.9, ( b )  x = 0, (c) x = 1.0, (d )  z = 2.5. 

maximum value just to the right of the crest. On the lee side, ub decreases rapidly 
first, then increases gradually before it levels off as one reaches the constant-water- 
depth region. 

The spectral solution described previously was employed to calculate the mass 
transport in the partially reflected wave region upstream of the hump. Downstream 
of the hump the mass transport was uniform and was obtained analytically. The 
stream function and vorticity were now known on the lateral sides, and the boundary 
conditions for the mass transport equations were completed. Finally, the mass 
transport equations were solved using the FEM. The mass transport horizontal 
velocity profiles are shown in figure lO(a-d) at  different sections of the flow. The 
different curves compare the influence of the parameter 6, for the three values 100 
(conduction solution of Longuet-Higgins), 0.1 and 0.05. The formation of the so- 
called Stuart boundary layer at the seabed is most apparent a t  the hump crest (x = 
0) in figure 10(b) .  The velocity profile exhibits larger gradients near y - - h , + 0 ( 6 ) ,  
where the velocity decreases rapidly from its value a t  the outer edge of the Stokes 
layer. The slope of the velocity profile in the Stuart layer, lau,/ayl, increases as 6 
decreases. The mass transport is not confined to this outer boundary layer, but 
extends throughout the flow domain. The mass transport velocity a t  the free surface 
seems to depend crucially on 6; in certain instances the backward drift at the free 
surface becomes forward as the value of 6 is increased or decreased. As one moves 
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X 

further downstream of the hump, the dependency of the flow on 6 diminishes, and the 
flow acquires the profile associated with a purely progressive wave. The same holds 
true upstream because of the small reflection ; however, smaller values of S would 
accentuate the discrepancies in the three profiles. Similar velocity profiles were 
obtained for the other two cases considered, h = 0.6 and 0.8. 

Three meshes with different lengths were used to test the effects of truncating the 
computational region. The three intervals were 1x1 < 2 (Mesh l ) ,  1x1 < 3 (Mesh 2) and 
1x1 < 4 (Mesh 3). The velocity profiles associated with each mesh were compared for 
h, = 0.7 and 6 equal to 100, 0.1, and 0.05 respectively. These profiles coincided at all 
sections for S equal to 100, and differed slightly a t  sections in the lee of the 
disturbance for 6 equal to  0.1. The differences increase as 6 decreases, especially 
downstream of the hump. Figure 11 (a ,  b )  depicts the case 6 = 0.05 at sections where 
the discrepancies are most dramatic. However the results of Mesh 2 and Mesh 3, in 
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X 

contrast to the Mesh 1 profiles, are in reasonable agreement and give us some 
confidence in the numerical solution. The end effect will always be present because 
of the Dirichlet boundary conditions. The flow inside the computational region does 
not contribute to the boundary distributions of the streamlines and vorticity. 
Instead it is forced to accommodate the imposed boundary conditions. The flow 
features next to the lateral boundaries will keep shifting as the lateral sides are 
moved further away from the scatterer. When the lateral boundaries are far enough, 

14-2 
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their location does not seem to affect the flow near the hump. Figures 12-14 show the 
Lagrangian streamlines (path lines) for different h,. One can see the formation of a 
recirculating region on the lee side of the hump. It decreases in size, in figures 12 and 
13, as 6 is decreased. In  figure 14 on the other hand, the size of the recirculating 
region seems to increase for smaller 6, and when 6 = 0.05 its size prevents the fluid 
from crossing over the hump. 

5. Conclusions 
A Fourier-Chebyshev spectral method has been presented for the solution of mass 

transport equations when the steady flow is periodic. The no-slip boundary condition 
on the velocity a t  the seabed has been recast into an integral equation on the 
vorticity coefficients of each Fourier mode. The spectral scheme is adopted to 
investigate mass transport over a uniform depth in partially reflected waves. The 
development of the so-called double boundary layer depends on the smallness of the 
parameter 6, and on the gradients of the Reynolds stresses (the Stokes drift) which, 
in turn, are a function of the reflection coefficient. As reflection increases, these 
gradients become directly involved in the convection and generation of the mean 
flow (Riley 1984). The contour lines reveal the formation of recirculating cells where 
the vorticity is uniformly distributed. 

The spectral scheme was also used in the study of a wave propagating over an 
isolated disturbance in the topography. An FEM scheme was employed to solve the 
governing equations in the neighbourhood of the hump. Numerical investigations 
revealed the formation of a large recirculating cell on the lee side. The size and 
magnitude of this circulation depended on 6, and the geometry of the hump. The 
main part of this work hinges on the ‘in-flow’ and ‘out-flow’ boundary conditions. 
Since radiation boundary conditions for the mean flow are lacking, assumptions have 
to be made regarding the nature of the flow away from the scatterer. These 
assumptions are reflected in the type of boundary conditions applied a t  the lateral 
sides of the computational domain. 

The present investigations have been limited to two-dimensional flows where the 
vortex stretching vanishes. Results on mass transport in the interior region of three- 
dimensional waves are the subject of another paper (Iskandarani & Liu 1991). If the 
first-order motion consists of a short-crested wave, the mass transport can be shown 
to be periodic in two horizontal directions. Fourier series can again be used to 
develop a numerical scheme similar to the one presented here. The formulation can 
be either extended through the use of a three-dimensional streamfunction (a vector 
potential) or recast into a velocity-vorticity formulation. 

The research was supported by a grant from the National Science Foundation 
(CTS-8902407). Computer facilities and funds were provided by the Cornell National 
Supercomputer Facility (CNSF). 

Appendix 
When n = 0, 

if m is even 
2 

(Srn ,o=-  m2-i  



when n =I= 0, 

where 

Mass transport in two-dimensional water wave8 

a 

- Ip(nkh) 
c p  cosh nkh 

c p  sinh nkh 

if p is even 

if p is odd, 

- 2 ( m 2 + p 2 - 1 )  if ( m + p )  even 

0 if (m+p)  odd. 
(A 4) 

I p  refers to the modified Bessel function of the first kind and order p .  
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